Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals.

نویسندگان

  • Thomas R Gawriluk
  • Jennifer Simkin
  • Katherine L Thompson
  • Shishir K Biswas
  • Zak Clare-Salzler
  • John M Kimani
  • Stephen G Kiama
  • Jeramiah J Smith
  • Vanessa O Ezenwa
  • Ashley W Seifert
چکیده

Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ 'healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M.m. Castaneus mice.

The MRL mouse has been shown to display an epimorphic regenerative response after ear hole punching leading to complete closure within 30 days and cartilage regrowth. The regenerative capacity of the MRL has also been seen after a severe cryoinjury to the heart leads to complete healing without scarring and functional myocardium. The wound healing ear hole closure response that occurs in MRL mi...

متن کامل

Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration

Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), ...

متن کامل

Genetic analysis of a mammalian wound-healing trait.

Wound healing of mammalian tissue is an essential process in the maintenance of body integrity. The general mechanism of wound healing usually studied in adult mammals is repair, in contrast to the regeneration seen in more primitive vertebrates. We recently have discovered that MRL/MpJ mice, unlike all other strains of mice tested, undergo rapid and complete wound closure that resembles regene...

متن کامل

Antler regrowth as a form of epimorphic regeneration in vertebrates - a comparative view.

The annual regrowth of deer antlers is a unique case of extensive appendage regeneration in mammals. This review compares basic aspects of antler regeneration with epimorphic regeneration in other vertebrate taxa. The mesenchymal cells that build up the regenerating antler are not derived from dedifferentiated cells in the pedicle stump, but from the proliferation of cells of the pedicle perios...

متن کامل

Muscle regeneration in amphibians and mammals: passing the torch.

Skeletal muscle in both amphibians and mammals possesses a high regenerative capacity. In amphibians, a muscle can regenerate in two distinct ways: as a tissue component of an entire regenerating limb (epimorphic regeneration) or as an isolated entity (tissue regeneration). In the absence of epimorphic regenerative ability, mammals can regenerate muscles only by the tissue mode. This review foc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016